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Abstract Food web structure is well known to vary

widely among ecosystems. Recent research indicates

that there can be a high degree of spatial heteroge-

neity within ecosystems as well. Xochimilco is a

small heterogeneous freshwater system that has been

transformed into a network of canals, small lakes, and

wetlands. Located within Mexico City, this ecosys-

tem has been intensively managed and highly

impacted for more than 50 years. This system

receives urban and agricultural runoff, with resulting

impacts on water quality. The aquatic community is

dominated by exotics such as carp (Cyprinus carpio)

and tilapia (Oreocrhomis niloticus), though the

system still supports endemic species such as the

aquatic salamander, axolotl (Ambystoma mexica-

num), and crayfish (Cambarellus montezumae),

which are both endangered. In this study, we used

carbon and nitrogen stable isotopes for the whole

food web and gut content analysis from the exotic

fishes to describe food web structure in different

canals within Xochimilco. There were significant

isotopic differences among canals. These differences

may result from isotopic baseline differences as well

as differences in actual food web structure: both are

related to local spatial variation in water quality

driven by nutrient inputs and exotic fishes. Within-

ecosystem variability is likely to be seen in other

perturbed shallow systems as well, and should be

explicitly considered in future food web studies.

Keywords Exotic fish � Carp � Isotopes �
Tilapia � Urban lake � Xochimilco

Introduction

Environmental heterogeneity affects species distribu-

tion in freshwater systems by generating patchy

environmental conditions and resource availability

(Questad & Foster, 2008). This has been well

described at the among-system scale, in which site

attributes such as depth, nutrient status, and turbidity

are related to fish community composition and trophic

structure (Tonn & Magnuson, 1982; Magnuson et al.,

1998; Jackson et al., 2001; Zambrano et al., 2006). In

recent studies, spatial heterogeneity has been found to
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affect ecological processes at finer scales (Vanbergen

et al., 2007). Environmental conditions can differ

widely within a system (Zambrano et al., 2009), and as

a result, the distribution of organisms is often limited

to just a small portion of the ecosystems they inhabit

(Contreras et al., 2009).

Studies of aquatic food webs have generally

attempted to characterize overall food web structure

of a system, without regard to finer scale spatial

heterogeneity. In fact, spatial heterogeneity of envi-

ronmental conditions also influences food web struc-

ture within a system at larger scales (Moore, 2004;

Thompson & Townsend, 2005). For example, large

rivers, lakes, and wetlands that are characterized by

strong environmental gradients (depth, shoreline,

water current, or climate) exhibit corresponding var-

iation in food web structure (Cifuentes et al., 1996; Fry

et al., 1999; March & Pringle, 2003; Bucci et al., 2007;

Abrantes & Sheaves, 2008). The relationship between

environmental drivers and food web structure at finer

scales (within-lake in small areas) is not well under-

stood, but has important bearing on our understanding

of trophic structure, and our ability to characterize it.

Xochimilco can be a useful system for evaluating

food web variability deriving from environmental

heterogeneity and contrasting land uses in a finer

scale. This water body used to be part of a system of

five shallow lakes that covered the whole Mexican

Valley (more than 470,000 ha). The aquatic system

has been reduced to approximately 3,000 ha, and now

is the last remnant of the former lake system. The

ecosystem has been transformed into a network of

canals, small lakes, and wetlands, the product of

centuries of land use management. It is located on the

southern edge of Mexico City, which has more than

18 million inhabitants. During the last century, this

system has undergone major hydrological alterations

resulting from groundwater pumping, canal dredging,

and wastewater inputs from green houses and from

urbanization (Crossley, 2004). Water quality has

declined in the last three decades, mainly as a result

of the shift toward intensive greenhouse agricultural

production (López et al., 2006; Méndez, 2006). This

diversity of local land uses and anthropogenic

impacts produces a high degree of spatial variability

in abiotic conditions (Zambrano et al., 2009).

Despite these impacts, this system is still of

tremendous ecological value. Xochimilco hosts 140

species of migratory birds (Stephan-Otto, 2005);

Cambarellus montezumae, an endemic crayfish spe-

cies from the High Plateau; and the last remaining

population of an aquatic salamander species, the

axolotl Ambystoma mexicanum (Zambrano et al.,

2007). Exotic species such as carp (Cyprinus carpio)

and tilapia (Oreochromis niloticus) were introduced

more than 20 years ago and are now the most abundant

fishes, comprising more than 95% of the vertebrate

biomass of the system (Valiente, 2006). Consequently,

axolotl abundance has declined sixfold over a 5-year

period (Zambrano et al., 2007) surviving only in

isolated areas (Contreras et al., 2009). Native crayfish,

once widespread, can now only be found in a small

number of locations (Alvarez & Rangel, 2007). These

locations have higher transparency and lower nutrient

concentrations (Contreras et al., 2009). Recent samples

suggest that these isolated areas have a higher macro-

phytes coverage and lower exotic fish abundance.

Gut content studies are the traditional method for

characterizing trophic relationships among organisms

in shallow lakes. More recently, stable isotopes of

nitrogen and carbon have been used to describe food

web structure for aquatic ecosystems (Peterson & Fry,

1987; Hecky & Hesslein, 1995; Vander Zanden et al.,

2006a). This approach allows the major pathways of

energy flow through food webs to be elucidated, and

has been used to characterize food web changes related

to anthropogenic impacts such as invasive species

(Vander Zanden et al., 1999) and habitat fragmentation

(Layman et al., 2007). Use of the two approaches in

conjunction provides a powerful means of character-

izing food webs (Layman & Post, 2008). Gaining a

better understanding of food web relationships pro-

vides a basis for guiding restoration of aquatic

ecosystems (Vander Zanden et al., 2006b).

The goal of this research is to evaluate spatial

differences in food web structure in Xochimilco, a

highly heterogeneous shallow aquatic system. The

information can be used to better understand the

linkages between land use, exotic species, and water

quality within a food web context.

Methods

Study site

Xochimilco is a high-altitude shallow (=1 m, mean

depth) water body composed of canals connecting
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small lakes and wetlands. Xochimilco includes

185 km of canals, 8 small lakes, and 2 seasonal

wetlands. The system was historically fed by springs,

but is now mainly recharged by treated and untreated

sewage, as well as by rainwater from May to October

(Jiménez et al., 1995). A small current (less than 4 m

per hour, Zambrano et al., 2009) moves through the

system from the south, where wastewater treatment

plant outputs are located, to the north, where the

biggest sewage outflow in Mexico is located. We

sampled 10 canals within Xochimilco, selected to

include the diversity of land uses such as urban areas,

greenhouse agriculture, traditional agricultural,

Olympic rowing canal, and ecological parks (Fig. 1).

Sampling abiotic variables and isotope analysis

Abiotic variables (conductivity, pH, turbidity, and

dissolved oxygen) were measured monthly from 2002

to 2009 with a portable water quality meter (YSI

Model 6600). Nutrient concentrations were deter-

mined immediately after collecting the water samples

with a Lamothe SMART colorimeter. Nitrates were

analyzed by zinc reduction, ammonia was obtained

by Nesslerization, and phosphates following the

ascorbic acid reduction method (APHA, 1998).

Values presented are the mean of all measurements

taken across years, since there were no significant

differences among years (Zambrano et al., 2009).

Organisms were sampled from November 2002 to

October 2005. Vertebrates (fish and amphibians)

were collected using a cast net. Each throw from the

cast net was counted, allowing us to estimate catch

per unit effort (CPUE) for the two most important

species (carp and tilapia), expressed as biomass per

cast net throw. A pole net was used to collect aquatic

invertebrates close to the shore where macrophytes

were present.

A total of 269 organisms were sampled for stable

isotope analysis from 4 plant groups and 11 animal

groups. Plants were represented by phytoplankton

(algae) n = 5; free-floating macrophytes (Lemna sp.)

n = 6; rooted macrophytes (Typha sp.) n = 5; and

terrestrial plants n = 12. Invertebrates were repre-

sented by zooplankton (Cladocera and Caecidotea)

n = 4; Hyallela sp. n = 17; crayfish (Cambarellus

montezumae) n = 11; insects (Hemiptera, Odonata,

Coleoptera larvae, Corixidae larvae, Tipulidae

larvae) n = 48; and chironomids n = 11, which were

considered separately because of their importance to

higher consumers in the food web. Vertebrates were

represented by the native aquatic salamander, axolotl

(Ambystoma mexicanum) n = 21; silversides (Meni-

dia humboldtiana) n = 21; and the exotic fishes

Goodea atripinnis n = 31, carp Cyprinus carpio

n = 30, and tilapia Oreochromis niloticus n = 47.

We tested seasonal variation for the isotope signature

of carp, tilapia, axolotl, crayfish, and odonata.

Muscle tissue was used in vertebrate samples,

which has a low turnover and integrates over an

extended time period (Hesslein et al., 1993; MacAvoy

et al., 2001). For big invertebrates (big insects and

crayfish), chitin was eliminated and internal tissues

were used, whereas for small invertebrates, whole

organisms were analyzed and samples were not

acidified. The average of C:N for all vertebrates was

3.2 (Standard deviation = 0.2); therefore, mathemat-

ical corrections were not necessary (Kiljunen et al.,

2006). All samples were dried and ground into a fine

powder with a mortar and pestle, packed in tin

capsules, and analyzed for nitrogen and carbon stable

isotope ratios using continuous flow isotope ratio mass

spectrometry (20-20 mass spectrometer: Europa

Scientific, Sandbach, UK at the University of Califor-

nia-Davis). Isotopic ratios were expressed in standard

delta ‘‘d’’ notation. The mean standard error for sample

duplicates was\5% in both C and N.

Gut content analysis

We used gut contents of carp (n = 76) and tilapia

(n = 85) as a direct means of inferring food web

differences among canals, since gut contents provide

direct and high taxonomic resolution trophic infor-

mation. Gut content samples were collected in all

seasons during 2003; those canals for which we

lacked fish samples from a season were eliminated

from the analysis, and consequently, we only used six

canals. Gut contents were obtained by dissecting the

complete digestive system. Each gut sample was

fixed with 70% alcohol and analyzed with a stereo-

scopic microscope in a Petri dish divided into 136

squares. The percentage of squares occupied by each

item was measured, using the same volume to avoid

overcounting (Amundsen et al., 1996). Items were

classified into the following categories: (a) particulate

organic matter (POM), such as detritus and uniden-

tified matter; (b) roots, seeds, and leaves from aquatic
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plants (macrophytes); (c) filamentous algae (algae);

(d) zooplankton, including daphnia and rotifers;

(e) insects; and (f) fish scales, bones, and other

invertebrates such as snails.

Data analysis

Differences among canals in abiotic variables and fish

densities were examined using ANOVA. Mean d13C

and d15N values for each set of taxa was used to build

bi-plots for each canal. To assess differences in isotope

signatures among canals and species, we used

all individuals in a MANOVA test. Taxa with only

a single organism from a canal were excluded from

the analysis. Community niche analysis variables

(Layman et al., 2007) such as distance to centroid

(CD, the average distance of each set of taxa to the

‘‘center’’ of the food web) and total niche area (TA, the

total area in food web space occupied by the set of taxa)

were used to quantitatively compare food web struc-

ture among canals. Primary producers were excluded

from community niche analysis because they were not

thoroughly sampled from each canal.

We related these niche variables to water quality

indicators, using a physicochemical index (PHQI),

which is based on pH, DO, conductivity, and turbidity

values, and a nutrient index (NQI), which is based on

NO3–N, NH4–N, and PO4–P concentrations. These

Fig. 1 Map of Xochimilco

showing the study area.

Canal names: A = Toro,

B = Urrutia,

C = Apatlaco,

D = Nativitas,

E = Costetexpan,

F = Santa Cruz,

G = Ampampilco,

H = Bordo, I = Huetzali,
J = P.Canotaje
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indices give numerical information by ranking values

of each variable into three categories: (1) suitable

conditions, (2) nonsuitable conditions, and (3) poor

conditions, depending on the effect of each variable on

aquatic organisms. Variables were added to form both

indexes, and lower values of the indexes indicate

higher water quality. These indexes were developed

based on intensive water quality sampling of the area,

and interpolated to generate water quality maps of the

canals (see Zambrano et al., 2009).

Results

Individual canals had unique physicochemical condi-

tions and differences were significant for most of the

variables measured (Table 1). Abundances of carp and

tilapia were also highly variable among canals and

there was a significant canal effect (Table 1).

Sample sizes for stable isotope analysis of primary

producers were generally small. d15N values for

primary producers were below 14%, though they

spanned a wide range of d13C values, and were

generally more enriched for floating producers.

Invertebrate d15N values ranged from 14.5 to 16%,

with d13C values again occupying a broad range.

Vertebrate d15N values were [15.8%, with tilapia

having the lowest values among the vertebrates.

Surprisingly, crayfish d15N was higher than most of

the vertebrates, and just below axolotl. A top native

fish predator Menidia humboldtiana has the highest

d15N of any taxa.

There were no significant differences among years in

carbon or nitrogen for odonata, crayfish, carp, tilapia,

and axolotl. There were no seasonal differences in d13C

except for crayfish (average dry season = -23.65%,

average rainy season = -17.39%; t = 2.67, df = 7,

P = 0.03). Also, most taxa did not show seasonal

differences in d15N, except for axolotl, which were

higher in the rainy season (average dry = 18.12%,

average rainy = 20.08%, t = 2.18, df = 12, P =

0.049), and Odonata, which were higher in the dry

season (average dry = 19.3%, average rainy =

15.5%, t = 2.89, df = 5, P = 0.039).

Although consideration of mean isotopic values

(i.e., cross sites) provide a general picture of food

web structure (Fig. 2), all taxa showed high variabil-

ity, particularly for d13C. MANOVA using both

isotopes revealed significant effects of ‘‘canal’’ and

‘‘taxa,’’, but no significant interaction (Table 2).

Considering d15N alone, there was a significant effect

of both canal and taxa. For d13C, only the canal effect

was statistically significant (Table 2).

Individual canals exhibited strong isotopic differ-

ences (Fig. 3). P.Canotaje, Huetzali, and Bordo

canals had elevated d13C values, while the rest of

the canals exhibited substantial overlap and lower

d13C signatures. Niche areas were highly variable

among canals; for example, one canal (Huetzali) had

TA values five times smaller than that of the Bordo

canal. However, CD values were more similar among

canals (Table 1).

There was an inverse relationship between niche area

and the nutrient-based water quality index (TA =

-17.12 NQI ? 205.87; r2 = 0.62, F = 8.24, df = 6,

P = 0.035). There was also a negative trend between

niche area and tilapia abundance, though the relation-

ship was not significant (TA = -6.8 CPUEgr ?

401; r2 = 0.68, F = 6.41, df = 4, P = 0.08). On the

contrary, there was no relationship between food web

niche variables and the other water quality index or

values (PHQIvsTA: r2 = 0.24, F = 1.94, df = 7,

P = ns; NQIvsCD: r2 = 0.07, F = 0.39, df = 6,

P = ns; PHQIvsCD: r2 = 0.27, F = 2.3, df = 7,

P = ns).

Carp diet differed substantially among canals

(Fig. 4). In some canals, carp feed largely on animals

(i.e., Urrutia), while in other canals, diet was

dominated by primary producers (i.e., Bordo and

Japon). Sediments and macrophytes dominated tila-

pia diets at all canals. The importance of algae was

high for both exotics in canals such as Huetzali,

which is the most turbid canal (Table 1).

Discussion

Our results reveal clear differences in food sources and

isotopic signatures among canals of Xochimilco. This

ecosystem has the same type of sediment throughout,

similar depth (close to 1 m), and a high degree of

connectivity among canals and lakes. These charac-

teristics would tend to result in lower spatial variation

in d15N and d13C values, as observed in tropical

complex lagoon–wetland–river systems (Roach et al.,

2009). This is not the case in Xochimilco, where we

see high spatial heterogeneity in nutrient concentra-

tions (Solis et al., 2006; Mazari-Hiriart et al., 2008) as
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well as the distribution of exotic fishes. These

variables can have major influences on aquatic com-

munity processes, and consequently, may drive vari-

ation in food web structure among canals.

Inorganic nitrogen concentrations in Xochimico’s

water column are high enough to be considered

hypereutrophic (Zambrano et al., 2009). Correspond-

ingly, average nitrogen isotopes values of organisms
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Fig. 2 Bi-plot showing the

mean and standard

deviation of d13C and d15N

values, averaged across all

canals

Table 1 Physicochemical data and vertebrate abundances from the three areas of Xochimilco

Canal Cond

(mS cm-1)

DO

(mg l-1)

pH Turb NH4

(ppm)

NO3

(ppm)

PO4

(ppm)

PHQI NQI Exotic

fish

Food web niche

NTU CPUE TA CD

Apampilco 1.38 5.41 8.40 nd 7.77 1.67 5.43 5.74 8.24 nd 60.91 2.95

Apatlaco 1.43 6.75 8.84 49.00 0.92 1.82 7.33 5.90 8.14 nd 67.75 2.65

Bordo 1.19 5.02 8.82 72.83 0.22 2.32 5.70 5.73 3.70 1.75 145.18 3.62

Costetexpan 0.88 3.77 7.64 29.05 1.86 13.04 10.17 5.10 9.00 7.48 52.16 3.36

Huetzali 1.40 14.20 8.91 120.54 nd 0.01 nd nd nd 4.92 33.21 3.33

Japón 1.97 5.57 8.58 42.25 4.08 4.78 4.86 nd nd 4.26 nd nd

Nativitas 0.66 3.13 7.40 42.53 1.59 30.38 7.57 5.51 8.17 nd 38.39 2.51

P.Canotaje 1.03 8.37 8.42 105.33 0.77 0.65 8.67 nd nd nd 75.15 2.54

Santa Cruz 1.33 6.55 8.66 nd 0.68 16.38 8.33 6.00 nd nd 12.56 2.11

Toro 1.74 7.60 8.47 53.32 0.50 0.25 12.60 6.00 5.13 3.40 94.48 2.93

Urrutia 1.20 2.26 7.76 16.41 1.32 9.75 3.33 7.00 7.00 0.28 137.60 4.69

ANOVA F test 12.67 34.98 11.74 21.65 2.01 5.7 1.99 – – 2.61 – –

DF 12.00 10 10 7.00 8.00 9 8.00 – – 6 – –

P \0.001 \0.001 \0.001 \0.001 0.07 \0.001 0.07 – – 0.05 – –

Cond conductivity, DO dissolved oxygen, Turb turbidity, CPUE catch per unit of effort, PHQI physicochemical quality index, NQI
nutrient quality index, TA total food web niche area, CD centroid distance in the food web, nd no data
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from Xochimilco are at least 10% higher than those

sampled from less impacted systems in Central

Mexico (Mercado-Silva et al., 2009). The highly

elevated d15N of the biota in human-impacted

Xochimilco is consistent with previous work linking

elevated d15N with anthropogenic nutrient inputs to

aquatic systems (Steffy & Kilham, 2004).

There were significant differences in biotic d13C

among canals, though, notably there were no signif-

icant ‘‘taxa’’ effects in our analysis. If all organisms

with the same feeding habits would obtain food from

multiple base lines, they would have similar isotopic

signatures, because this signature represents a mix of

all items consumed. On the contrary, these organisms

are consuming sources with different base lines, and

they have different isotope signatures. Thus, canal-to-

canal variation in d13C appears to reflect underlying

biogeochemical differences among canals rather than

food web differences. In other words, isotopic

differences among canals may be partially attributed

to baseline effects, which are independent of actual

differences in food web structure among canals.

In addition to the baseline effects noted above, our

analysis also detected food web differences among

canals. Food web niche variables varied among

canals. In particular, TA was negatively related to

our nutrient index, thus suggesting a potential effect

of anthropogenic nutrient inputs on food web struc-

ture itself. In this case, one can hypothesize that

higher nutrient inputs reduce the diversity of the

resource base, and as a result, reduce the area

occupied by the food web in isotope niche space.

Canals with reduced niche areas also tended to be

more invaded by tilapia, suggesting a potential

impact of this highly abundant and omnivorous fish

Table 2 MANOVA and ANOVA analyses to test differences among species and canals using both isotopic signatures (d15N and

d13C)

MANOVA d15N–d13C DF Pillai trace F Num DF P

Canal 12 1.0319 15.4545 24 \0.001

Taxa 7 0.5558 9.5661 14 \0.001

Canal * Taxa 31 0.2785 0.908 62 0.671

Residuals 174

ANOVA d13C DF Sum Sq Mean Sq F value P

Canal 12 3047.78 253.98 26.0161 \0.001

Taxa 7 131.22 18.75 1.9202 0.06897

Canal * Taxa 31 212.63 6.86 0.7026 0.87696

Residuals 174 1698.67 9.76

ANOVA d15N DF Sum Sq Mean Sq F value P

Canal 12 496.33 41.36 9.3866 \0.001

Taxa 7 634.28 90.61 20.5635 \0.001

Canal * Taxa 31 160.28 5.17 1.1734 0.2569

Residuals 174

The first section shows the MANOVA results, the second d13C ANOVA, and the third d15N ANOVA results

Fig. 3 Polygons encompassing the convex hull area for each

sample canals in d13C–d15N niche space. Each triangle is the

average value for a taxa collected from a canal. Primary

producers were excluded from this analysis. Canal names:

A = Toro, B = Urrutia, C = Apatlaco, D = Nativitas,

E = Costetexpan, F = Santa Cruz, G = Ampampilco, H =

Bordo, I = Huetzali, J = P.Canotaje
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on food webs as have been seen in other tropical

regions (Zaret & Paine, 1973; Ogutuohwayo &

Hecky, 1991; Campbell et al., 2005). More research

should be conducted to clarify which factors have

higher influence on the niche space.

Seasonal environmental changes can affect isoto-

pic signature (Douglas et al., 2005; Gu, 2009). But in

systems under less variable conditions, seasonality

may have a lower effect on isotope signatures.

Temporal changes in Xochimilco freshwater system

used to be related more to dry and wet seasons than

any other variable. But modifications to its hydrology

generated a constant depth in most of the canals and

lakes, reducing a possible seasonal effect on organ-

isms’ isotope signatures. Significant seasonal changes

were limited to just a few taxa and did not reflect

major food web shifts. But they tend to affect native

species, which seem to keep variations in their food

habits throughout the year. Therefore, these varia-

tions must be considered in the future studies

particularly for native species such as the axolotl

and crayfish. Overall, spatial isotopic variability far

outweighed temporal variability in this system.

Gut content analysis indicates differences in fish

resource use among canals. Exotic fish at lower levels

of the food web, such as tilapia, tend to exhibit higher

isotopic variation compared to other species (Gu

et al., 1997). In Xochimilco, all species exhibited

highly variable isotopic signatures. In addition, canals

with higher TA values such as Bordo and Urrutia had

lower densities of exotic fishes. These canals also had

more macrophytes, and our diet analysis indicated

that insects and zooplankton were more important in

the fish diets. These areas are also some of the few

places where native axolotl and crayfish can survive.

Canals with smaller TA values had higher densities of

exotics such as Costetexpan, and fish diets were

dominated by POM.

Extreme nutrient loading, as a consequence of urban

development and greenhouse agriculture (Zambrano

et al., 2009), and elevated abundances of exotic fishes

are likely drivers of within-system isotopic and food

web variation in this system. These impacts appear to

cause a reduction in the diversity of trophic pathways in

the ecosystem. With the diversity of basal resources

depleted, consumers’ capacity to respond to changes in

food quality or quantity is also reduced. This capacity

is critical for maintaining the stability of a complex

food web (Kondoh, 2003). Consistent with our previ-

ous findings (Zambrano et al., 2007; Zambrano et al.,

2009; Zambrano et al., 2010), restoration measures

should include the control or removal of exotic species

coupled with nutrient and sediment reductions from

urban and agricultural areas.

Stable isotope studies supported by gut content

analysis can provide useful information about food

web structure and energy fluxes within an ecosystem.

In Xochimilco, local heterogeneity in environmental

and food web properties was found to be quite high.

This information can be used to highlight some of the

biogeochemical and ecological differences among

canals within the system, and relate them to anthro-

pogenic impacts such as exotic fishes and the loss of

water quality due to nutrient loading. This shallow

Fig. 4 Gut contents, expressed as percent of total food

consumed, for the two most abundant exotic fishes in the

system, carp and tilapia, from six different canals.

CSTX = Costetexpan, BORD = Bordo, HUET = Huetzali,

URR = Urrutia. F&O = Fish and other insects, Ins = Insects,

Zoo = Zooplankton, Mac = Macrophytes, POM = Particu-

late organic matter
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system represents an extreme case of within-system

heterogeneity since it is located within one of the

biggest cities in the world, though other human-

impacted aquatic systems may also be characterized

by this type of intrasystem heterogeneity.
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